Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2,6-Bis[(4-bromophenyl)iminomethyl]pyridine- $\kappa^3 N, N', N''$ }trichloridochromium(III)

Xiao-Ping Li, Yong-Yong Liu and Jian-She Zhao*

Department of Chemistry, Shaanxi Key Laboratory for Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China Correspondence e-mail: jszhao@nwu.edu.cn

Received 26 August 2010; accepted 28 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.047; wR factor = 0.153; data-to-parameter ratio = 16.4.

In the title compound, $[CrCl_3(C_{19}H_{13}Br_2N_3)]$, the Cr^{3+} ion is coordinated by the tridentate 2,6-bis[(4-bromophenyl)iminomethyl]pyridine Schiff base ligand in a *fac*-octahedral geometry. The dihedral angles between the pyridine and benzene rings are 23.9 (6) and 70.7 (1)°.

Related literature

For background to Schiff bases as chelating ligands, see: Yin *et al.* (2010); Yang *et al.* (2010); Barboiu *et al.* (2009); Rohini *et al.* (2009); Legrand *et al.* (2009). For similar zinc complexes, see: Ceniceros-Gomez *et al.* (2000); Sugiyama *et al.* (2002); Sun *et al.* (2009); Gong *et al.* (2009); Xiao *et al.* (2010).

Experimental

Crystal data	
$[CrCl_3(C_{19}H_{13}Br_2N_3)]$	a = 13.722 (3) Å
$M_r = 601.49$	b = 10.111 (2) Å
Monoclinic, $P2_1/c$	c = 18.905 (3) Å

 $\beta = 124.702 \ (12)^{\circ}$ $V = 2156.4 \ (7) \ \text{\AA}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.457, T_{\rm max} = 0.689$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 254 pc

 $wR(F^2) = 0.153$ H-ato

 S = 0.97 $\Delta \rho_{max}$

 4177 reflections
 $\Delta \rho_{min}$

 $\mu = 4.62 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.13 \times 0.09 \text{ mm}$

11189 measured reflections 4177 independent reflections 2279 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.053$

254 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the NWU Graduate Experimental Research Funds (project No. 09YSY22) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5023).

References

- Barboiu, M., Dumitru, F., Legrand, Y.-M., Petit, E. & vander Lee, A. (2009). Chem. Commun. pp. 2192–2194.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.
- Ceniceros-Gomez, A. E., Barba-Behrens, N., Quiroz-Castro, M. E., Bernes, S., Nöth, H. & Castillo-Blum, S. E. (2000). *Polyhedron*, **19**, 1821–1827.
- Gong, D. R., Wang, B. L., Bai, C. X., Bi, J. F., Wang, F., Dong, W. M., Zhang, X. Q. & Jiang, L. S. (2009). *Polymer*, **50**, 6259–6264.
- Legrand, Y.-M., Dumitru, F., Lee, A. V. D. & Barboiu, M. (2009). Supramol. Chem. 21, 230–237.
- Rohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & &Ravinder, V. (2009). *Eur. J. Med. Chem.* 44, 3330–3339.
- Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sugiyama, H., Aharonian, G., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. (2002). J. Am. Chem. Soc. 124, 12268–12274.
- Sun, W. H., Zhang, S. & Jie, S. Y. (2009), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101357931, 22 pp.
- Xiao, L. W., Zhang, M. & Sun, W. H. (2010). Polyhedron, 29, 142-147.
- Yang, Y. R., Li, W., Huang, X. B., Zhang, L. T., Qin, W., Wu, J., Wang, J. D., Jiang, B. B. & Huang, Z. L. (2010), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101649012, 19 pp.
- Yin, J., Dasgupta, S. & Wu, J. S. (2010). Org. Lett. 12, 1712-1715.

supplementary materials

Acta Cryst. (2010). E66, m1215 [doi:10.1107/S1600536810034689]

$\{2,6-Bis[(4-bromophenyl)iminomethyl]pyridine-\kappa^3N,N',N''\}$ trichloridochromium(III)

X.-P. Li, Y.-Y. Liu and J.-S. Zhao

Comment

Schiff bases have often been used as chelating ligands in coordination chemistry (Yin *et al.* (2010); Yang *et al.* (2010); Rohini *et al.* (2009): Legrand *et al.* (2009)). We report here the crystal structure of the title new chromium complex with the chelating Schiff base ligand 2, 6-bis [1-(4-bromophenylimino)] pyridine The Cr atom in the complex is six-coordinated by one pyridine N and two imine N atoms of the Schiff base ligand, and by two bromide atoms, forming tetrahedral geometry (Fig.1). The dihedral angle between the pyridine and the benzene rings is 23.9 (6) ° and 70.7 (1) °. The bond lengths (Table 1) related to the Cr atom are comparable to those observed in similar chromium complexes (Sugiyama *et al.* (2002); Sun *et al.* (2009); Gong *et al.* (2009); Xiao *et al.* (2010)).

Experimental

2,6-bis[1-(4-bromophenylimino)]pyridine(0.0226 g, 0.05 mmol), and CrCl₃?6H₂O (0.0139 g, 0.05 mmol) were mixed and stirred in ethanol(10 ml) for 2 min and then heated in a stainless steel reactor with Teflon liner at 353 K for 72 h. After cooling at 5 K per hour, green crystals were obtained.

Refinement

H atoms were positioned geometrically(C—H = 0.93 Å) and refined using a riding model, with U_{iso} (H) = 1.2Ueq(C).

Figures

Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids.

{2,6-Bis[(4-bromophenyl)iminomethyl]pyridine- $\kappa^3 N, N', N''$ }trichloridochromium(III)

Crystal data [CrCl₃(C₁₉H₁₃Br₂N₃)] $M_r = 601.49$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.722 (3) Å

F(000) = 1172 $D_x = 1.853 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1555 reflections \theta = 2.4-19.9^\circ

b = 10.111 (2) Å	$\mu = 4.62 \text{ mm}^{-1}$
c = 18.905 (3) Å	T = 296 K
$\beta = 124.702 \ (12)^{\circ}$	Block, green
V = 2156.4 (7) Å ³	$0.20\times0.13\times0.09~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	4177 independent reflections
Radiation source: fine-focus sealed tube	2279 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
φ and ω scans	$\theta_{\text{max}} = 25.9^\circ, \ \theta_{\text{min}} = 2.2^\circ$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 13$
$T_{\min} = 0.457, \ T_{\max} = 0.689$	$k = -12 \rightarrow 12$
11189 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map		
Least-squares matrix: full Hydrogen site location: inferred from neight sites			
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained		
$wR(F^2) = 0.153$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0769P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$		
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$		
4177 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$		
254 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$		
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$		

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0012 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cr1	0.28797 (8)	0.86124 (8)	0.64659 (6)	0.0434 (3)
Br1	0.69677 (8)	0.65971 (9)	1.11306 (5)	0.0892 (3)
Br2	0.00271 (10)	0.39656 (7)	0.26880 (5)	0.1018 (4)
Cl1	0.31007 (19)	0.63611 (14)	0.66454 (12)	0.0757 (6)
Cl2	0.44502 (15)	0.87626 (17)	0.63412 (11)	0.0630 (5)
C13	0.12377 (15)	0.86383 (17)	0.65121 (11)	0.0656 (5)
N1	0.3903 (4)	0.9528 (4)	0.7728 (3)	0.0483 (12)
N2	0.2615 (4)	1.0541 (4)	0.6191 (3)	0.0449 (11)
N3	0.1766 (4)	0.8645 (4)	0.5113 (3)	0.0463 (12)
C1	0.4323 (7)	0.7618 (7)	0.8620 (4)	0.0691 (19)
H1	0.3679	0.7197	0.8145	0.083*
C2	0.5019 (8)	0.6955 (7)	0.9398 (5)	0.077 (2)
H2	0.4839	0.6084	0.9440	0.092*
C3	0.5961 (6)	0.7561 (7)	1.0101 (4)	0.0632 (18)
C4	0.6215 (6)	0.8848 (7)	1.0040 (4)	0.071 (2)
H4	0.6850	0.9269	1.0522	0.085*
C5	0.5537 (6)	0.9535 (7)	0.9267 (4)	0.0658 (18)
Н5	0.5721	1.0407	0.9232	0.079*
C6	0.4597 (5)	0.8921 (6)	0.8557 (4)	0.0480 (14)
C7	0.3845 (6)	1.0794 (6)	0.7687 (4)	0.0560 (16)
H7	0.4241	1.1302	0.8185	0.067*
C8	0.3151 (5)	1.1420 (5)	0.6847 (4)	0.0501 (15)
C9	0.2975 (6)	1.2779 (6)	0.6666 (4)	0.0571 (17)
Н9	0.3329	1.3398	0.7109	0.069*
C10	0.2260 (6)	1.3180 (6)	0.5810 (4)	0.0591 (17)
H10	0.2134	1.4078	0.5680	0.071*
C11	0.1731 (5)	1.2261 (6)	0.5144 (4)	0.0531 (16)
H11	0.1258	1.2530	0.4573	0.064*
C12	0.1932 (5)	1.0924 (5)	0.5360 (3)	0.0424 (13)
C13	0.1483 (5)	0.9800 (6)	0.4780 (4)	0.0480 (14)
H13	0.1007	0.9917	0.4187	0.058*
C14	0.1391 (5)	0.7505 (5)	0.4560 (3)	0.0436 (14)
C15	0.1856 (6)	0.7279 (6)	0.4095 (4)	0.0498 (15)
H15	0.2436	0.7837	0.4152	0.060*
C16	0.1458 (7)	0.6218 (6)	0.3541 (4)	0.0623 (19)
H16	0.1769	0.6053	0.3222	0.075*
C17	0.0601 (7)	0.5402 (6)	0.3461 (4)	0.0626 (19)
C18	0.0162 (7)	0.5603 (7)	0.3942 (5)	0.077 (2)
H18	-0.0405	0.5031	0.3891	0.092*
C19	0.0562 (6)	0.6658 (6)	0.4505 (5)	0.070 (2)
H19	0.0277	0.6796	0.4842	0.084*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0463 (6)	0.0347 (5)	0.0413 (5)	-0.0011 (4)	0.0203 (5)	-0.0050 (4)
Br1	0.0738 (6)	0.1233 (8)	0.0643 (5)	0.0183 (5)	0.0356 (5)	0.0310 (5)
Br2	0.1720 (11)	0.0517 (5)	0.0608 (5)	-0.0254 (5)	0.0540 (6)	-0.0206 (4)
Cl1	0.1130 (17)	0.0359 (9)	0.0707 (12)	0.0020 (9)	0.0479 (12)	-0.0021 (8)
Cl2	0.0507 (10)	0.0704 (11)	0.0663 (11)	0.0064 (9)	0.0324 (9)	0.0027 (8)
C13	0.0572 (11)	0.0812 (12)	0.0614 (10)	-0.0099 (9)	0.0355 (9)	-0.0088 (9)
N1	0.055 (3)	0.037 (3)	0.044 (3)	-0.002 (2)	0.023 (3)	-0.006 (2)
N2	0.047 (3)	0.036 (3)	0.042 (3)	-0.001 (2)	0.020 (2)	-0.005 (2)
N3	0.047 (3)	0.041 (3)	0.041 (3)	-0.004 (2)	0.018 (3)	-0.007 (2)
C1	0.070 (5)	0.064 (4)	0.055 (4)	-0.006 (4)	0.024 (4)	-0.001 (4)
C2	0.098 (6)	0.056 (4)	0.067 (5)	-0.003 (4)	0.041 (5)	0.010 (4)
C3	0.058 (5)	0.077 (5)	0.047 (4)	0.013 (4)	0.026 (4)	0.004 (4)
C4	0.061 (5)	0.086 (5)	0.046 (4)	-0.012 (4)	0.019 (4)	-0.010 (4)
C5	0.059 (4)	0.065 (4)	0.049 (4)	-0.011 (4)	0.017 (4)	0.000 (3)
C6	0.045 (4)	0.046 (3)	0.047 (4)	0.002 (3)	0.022 (3)	-0.002 (3)
C7	0.058 (4)	0.053 (4)	0.044 (4)	-0.002 (3)	0.021 (3)	-0.011 (3)
C8	0.048 (4)	0.039 (3)	0.049 (4)	-0.004 (3)	0.020 (3)	-0.006 (3)
C9	0.060 (4)	0.038 (3)	0.054 (4)	0.002 (3)	0.022 (4)	-0.002 (3)
C10	0.066 (5)	0.030 (3)	0.071 (5)	-0.003 (3)	0.033 (4)	-0.002 (3)
C11	0.049 (4)	0.042 (3)	0.058 (4)	0.002 (3)	0.024 (3)	0.006 (3)
C12	0.043 (4)	0.036 (3)	0.042 (3)	-0.002 (3)	0.020 (3)	-0.005 (3)
C13	0.042 (4)	0.054 (4)	0.040 (3)	-0.006 (3)	0.019 (3)	-0.010 (3)
C14	0.047 (4)	0.042 (3)	0.033 (3)	-0.005 (3)	0.017 (3)	-0.009 (3)
C15	0.063 (4)	0.042 (3)	0.046 (4)	-0.004 (3)	0.033 (3)	-0.002 (3)
C16	0.097 (6)	0.044 (4)	0.057 (4)	0.003 (4)	0.050 (4)	0.001 (3)
C17	0.094 (6)	0.040 (3)	0.036 (3)	0.002 (4)	0.026 (4)	-0.002 (3)
C18	0.079 (5)	0.060 (5)	0.077 (5)	-0.024 (4)	0.036 (5)	-0.023 (4)
C19	0.068 (5)	0.066 (5)	0.084 (5)	-0.016 (4)	0.048 (5)	-0.021 (4)

Geometric parameters (Å, °)

1.997 (4)	С5—Н5	0.9300
2.105 (5)	С7—С8	1.451 (8)
2.170 (5)	С7—Н7	0.9300
2.2959 (17)	C8—C9	1.403 (8)
2.3025 (19)	C9—C10	1.394 (8)
2.3042 (19)	С9—Н9	0.9300
1.893 (6)	C10-C11	1.391 (8)
1.886 (6)	C10—H10	0.9300
1.283 (7)	C11—C12	1.393 (8)
1.428 (7)	C11—H11	0.9300
1.349 (7)	C12—C13	1.450 (7)
1.353 (7)	C13—H13	0.9300
1.277 (7)	C14—C15	1.369 (7)
1.439 (6)	C14—C19	1.379 (8)
	1.997 (4) 2.105 (5) 2.170 (5) 2.2959 (17) 2.3025 (19) 2.3042 (19) 1.893 (6) 1.886 (6) 1.283 (7) 1.428 (7) 1.349 (7) 1.353 (7) 1.277 (7) 1.439 (6)	1.997(4)C5—H5 $2.105(5)$ C7—C8 $2.170(5)$ C7—H7 $2.2959(17)$ C8—C9 $2.3025(19)$ C9—C10 $2.3042(19)$ C9—H9 $1.893(6)$ C10—C11 $1.886(6)$ C10—H10 $1.283(7)$ C11—C12 $1.428(7)$ C11—H11 $1.349(7)$ C12—C13 $1.353(7)$ C13—H13 $1.277(7)$ C14—C15 $1.439(6)$ C14—C19

C1—C2	1.387 (9)	C15—C16	1.377 (8)
C1—C6	1.394 (8)	C15—H15	0.9300
C1—H1	0.9300	C16—C17	1.372 (9)
C2—C3	1.363 (9)	C16—H16	0.9300
С2—Н2	0.9300	C17—C18	1.361 (9)
C3—C4	1.369 (9)	C18—C19	1.381 (8)
C4—C5	1.392 (9)	C18—H18	0.9300
C4—H4	0.9300	С19—Н19	0.9300
C5—C6	1.370 (8)		
N2—Cr1—N3	76.68 (18)	C1—C6—N1	117.1 (6)
N2—Cr1—N1	77.16 (18)	N1—C7—C8	118.8 (5)
N3—Cr1—N1	153.84 (18)	N1—C7—H7	120.6
N2—Cr1—Cl1	174.56 (14)	С8—С7—Н7	120.6
N3—Cr1—Cl1	97.97 (13)	N2—C8—C9	119.5 (5)
N1—Cr1—Cl1	108.18 (14)	N2—C8—C7	113.1 (5)
N2—Cr1—Cl2	87.19 (14)	C9—C8—C7	127.4 (6)
N3—Cr1—Cl2	87.05 (14)	C10—C9—C8	118.5 (6)
N1—Cr1—Cl2	91.55 (14)	С10—С9—Н9	120.7
Cl1—Cr1—Cl2	91.60 (7)	С8—С9—Н9	120.7
N2—Cr1—Cl3	87.83 (14)	C11—C10—C9	121.1 (6)
N3—Cr1—Cl3	89.83 (14)	C11—C10—H10	119.5
N1—Cr1—Cl3	89.31 (14)	C9—C10—H10	119.5
Cl1—Cr1—Cl3	93.18 (7)	C10-C11-C12	118.0 (6)
Cl2—Cr1—Cl3	174.62 (7)	C10-C11-H11	121.0
C7—N1—C6	118.4 (5)	C12—C11—H11	121.0
C7—N1—Cr1	112.3 (4)	N2-C12-C11	120.7 (5)
C6—N1—Cr1	129.3 (4)	N2-C12-C13	111.7 (5)
C12—N2—C8	122.2 (5)	C11—C12—C13	127.6 (5)
C12—N2—Cr1	119.1 (4)	N3—C13—C12	117.7 (5)
C8—N2—Cr1	118.6 (4)	N3—C13—H13	121.2
C13—N3—C14	119.5 (5)	С12—С13—Н13	121.2
C13—N3—Cr1	114.8 (4)	C15—C14—C19	120.9 (5)
C14—N3—Cr1	125.6 (4)	C15—C14—N3	119.7 (5)
C2—C1—C6	119.4 (7)	C19—C14—N3	119.4 (5)
C2—C1—H1	120.3	C14—C15—C16	119.4 (6)
С6—С1—Н1	120.3	C14—C15—H15	120.3
C3—C2—C1	121.0 (7)	C16—C15—H15	120.3
C3—C2—H2	119.5	C17—C16—C15	119.7 (6)
С1—С2—Н2	119.5	С17—С16—Н16	120.1
C2—C3—C4	119.4 (6)	C15-C16-H16	120.1
C2—C3—Br1	120.2 (6)	C18—C17—C16	121.0 (6)
C4—C3—Br1	120.3 (6)	C18—C17—Br2	118.9 (5)
C3—C4—C5	120.9 (6)	C16—C17—Br2	120.1 (5)
C3—C4—H4	119.6	C17—C18—C19	119.8 (7)
C5—C4—H4	119.6	C17—C18—H18	120.1
C6—C5—C4	119.7 (6)	C19—C18—H18	120.1
C6—C5—H5	120.1	C14—C19—C18	119.2 (6)
C4—C5—H5	120.1	C14—C19—H19	120.4
C5—C6—C1	119.6 (6)	C18—C19—H19	120.4

supplementary materials

C5-C6-N1	123.2 (5)		
N2—Cr1—N1—C7	-0.1 (4)	C7—N1—C6—C5	-26.0 (9)
N3—Cr1—N1—C7	0.2 (7)	Cr1—N1—C6—C5	154.0 (5)
Cl1—Cr1—N1—C7	178.9 (4)	C7—N1—C6—C1	157.2 (6)
Cl2—Cr1—N1—C7	86.7 (4)	Cr1—N1—C6—C1	-22.8 (8)
Cl3—Cr1—N1—C7	-88.0 (4)	C6—N1—C7—C8	179.5 (5)
N2-Cr1-N1-C6	179.9 (5)	Cr1—N1—C7—C8	-0.6 (7)
N3—Cr1—N1—C6	-179.8 (4)	C12—N2—C8—C9	1.4 (9)
Cl1—Cr1—N1—C6	-1.1 (5)	Cr1—N2—C8—C9	-180.0 (4)
Cl2—Cr1—N1—C6	-93.3 (5)	C12—N2—C8—C7	-179.9 (5)
Cl3—Cr1—N1—C6	92.0 (5)	Cr1—N2—C8—C7	-1.3 (7)
N3-Cr1-N2-C12	-0.5 (4)	N1—C7—C8—N2	1.2 (8)
N1-Cr1-N2-C12	179.4 (4)	N1—C7—C8—C9	179.8 (6)
Cl1—Cr1—N2—C12	9.9 (19)	N2-C8-C9-C10	-0.7 (9)
Cl2—Cr1—N2—C12	87.2 (4)	C7—C8—C9—C10	-179.2 (6)
Cl3—Cr1—N2—C12	-90.8 (4)	C8—C9—C10—C11	-0.2 (10)
N3—Cr1—N2—C8	-179.1 (5)	C9-C10-C11-C12	0.4 (9)
N1-Cr1-N2-C8	0.8 (4)	C8—N2—C12—C11	-1.2 (8)
Cl1—Cr1—N2—C8	-168.7 (14)	Cr1—N2—C12—C11	-179.8 (4)
Cl2—Cr1—N2—C8	-91.5 (4)	C8—N2—C12—C13	178.6 (5)
Cl3—Cr1—N2—C8	90.5 (4)	Cr1—N2—C12—C13	0.0 (6)
N2-Cr1-N3-C13	0.9 (4)	C10—C11—C12—N2	0.2 (9)
N1-Cr1-N3-C13	0.6 (7)	C10—C11—C12—C13	-179.5 (6)
Cl1—Cr1—N3—C13	-178.1 (4)	C14—N3—C13—C12	-176.8 (5)
Cl2—Cr1—N3—C13	-86.9 (4)	Cr1—N3—C13—C12	-1.2 (7)
Cl3—Cr1—N3—C13	88.7 (4)	N2-C12-C13-N3	0.8 (7)
N2-Cr1-N3-C14	176.2 (5)	C11—C12—C13—N3	-179.4 (6)
N1-Cr1-N3-C14	175.9 (4)	C13—N3—C14—C15	67.8 (7)
Cl1—Cr1—N3—C14	-2.8 (4)	Cr1—N3—C14—C15	-107.2 (5)
Cl2—Cr1—N3—C14	88.4 (4)	C13—N3—C14—C19	-111.8 (7)
Cl3—Cr1—N3—C14	-96.0 (4)	Cr1—N3—C14—C19	73.1 (7)
C6—C1—C2—C3	0.3 (11)	C19—C14—C15—C16	2.3 (9)
C1—C2—C3—C4	0.8 (11)	N3-C14-C15-C16	-177.3 (5)
C1—C2—C3—Br1	-175.3 (5)	C14—C15—C16—C17	0.1 (9)
C2—C3—C4—C5	-1.1 (11)	C15—C16—C17—C18	-2.0 (10)
Br1—C3—C4—C5	174.9 (5)	C15—C16—C17—Br2	178.8 (5)
C3—C4—C5—C6	0.4 (10)	C16—C17—C18—C19	1.5 (11)
C4—C5—C6—C1	0.7 (10)	Br2-C17-C18-C19	-179.3 (5)
C4—C5—C6—N1	-176.0 (6)	C15—C14—C19—C18	-2.9 (10)
C2—C1—C6—C5	-1.0 (10)	N3—C14—C19—C18	176.8 (6)
C2-C1-C6-N1	175.9 (6)	C17—C18—C19—C14	0.9 (11)

